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The transfer of drugs through cell membrane

m Passive diffusion

1. A process by which a compound moves down
its concentration gradient without a membrane
actively participating.

A
2. The rate of passive diffusion across of B b Efftuxpump g
membrane is proportional to the partition l Apical
coefficient of the compound, the diffusion — " | %l — E
coefficient through the membrane, and the — | — Y
compound’s concentration gradient across the ‘ — [B D — | ‘. ‘
membrane. - | (e=c2)
4
Basolateral
m Active transport l B D l
1. A process by which a transport protein using A
energy (e.g. APT hydrolysis) to shuttle a paracellular transport

molecule across the membrane against ranscellular transport

A:

B:t

concentration gradient. C: transporter-facilitated pathway

2.  Some hydrophilic drugs could be transported D: transport-restriced pathway
through carrier-facilitated transport protein.

3. Efflux pumps (e.g. P-glycoprotein).
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In vitro models for predicting membrane permeability

m PAMPA assay _Acceptor (Buffer)\
1. Models transcellular (passive) absorption. v Phospholipidic
= membrane
sl
2. Two compartments are separated by one
artificial membrane filter. 96-well plate permits S I /
for high-throughput compound screening. Donor (Buffer + Compound)
m Caco-2 assay
1. Human colon carcinoma cell line spontaneously  cell ——1> Apical
monolayer compartment
grows as a monolayer. «— I 7
2. All mechanisms are modelled. = — e
Semi-permeable compartment

membrane
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In silico models for predicting membrane permeability

m  Knowledge-based QSPR model

1. Mathematic description of the statistical relationship between experimental permeability
measurements of training compounds and their chemical structure and physiochemical properties
(descriptor).

2. The most critical parameter in QSPR model is Lipophilicity (LogP).
LogP4,=5.83(£0.53)-V/100-0.74(+0.31)-1*-3.51(+0.38)-3-0.15(+0.23)-0-0.02(+0.34).

3.  Success rate extremely depends on the compounds in the training set, thus transferability is limited.

m MD-based inhomogeneous solubility-diffusion model
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Three-step process Anisotropic nature of membrane
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Overview of this work

m Exploring the effectiveness of the combined use of umbrella sampling
molecular dynamics simulation and PAMPA assay in predicting membrane
permeability.

1. Calibration of MD model with PAMPA assay on training compounds.

Permeability model

2. Assessing MD model against PAMPA assay on target compounds.

- N
Permeability model H' b
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Studied compounds

m Calibration compounds
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m 18 structurally related testing compounds: LLNL1-LLNL18
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Experimental procedures

m  MD simulation

1. Each system contains 5124 water molecules and 72 DOPC molecules and a small compound.

2. Each system was coupled with 100 individual simulations, where compound was constrained at different
z-axis position. Each simulation was run for ~50 ns.

3. The potential of mean force (PMF) profile and position-dependent diffusion of each compound was
calculated using the last 30-ns MD trajectory.

z
potential of mean force (pmf) y(z) = —f (F,(z")),7dz" position-dependent diffusion D((Z)) = @)
-1 Jy Czz(®)dt

. , AG . -
position-dependent resistance R(z) = %@(z)) overall permeation coefficient e T s ;(Z)dz
-k

m PAMPA assay

1. The Gentest Precoated PAMPA Plate System (Corning Discovery Labware) was applied.

2. Donor well and receiver well were separated by a filter plate precoated with phospholipid-oil-
phospholipid trilayer consisting of DOPC phospholipids.

3. Compounds were incubated for 5 h at 25C° and then quantified using the Acquity ultra performance
liquid chromatography (UPLC) system.

—In[1 = G,(1)/C,]

= C, = [Cp(t) x Vi + Cy(t) x V,1/(Vp + V)
AX(1/Vy+1/V,) xt

o

[

Ruyin Cao @ Wipf Group Page 7 of 11 11/19/2017



"
Results
m  Assessment of MD-based prediction accuracy

Compound Coghar | pagrer Permestion carceory R2=0.97 @ Impermeable O Medium
From PAMPA | From PMF g @ High N

MMB4 -9.25 -16.29 Impermeable | Impermeable ny .

HI-6 7.69 1116 Impermeable | Impermeable B

2-PAM -7.52 -6.77 Impermeable | Impermeable ':';

Theophylline -5.91 -0.02 Low Low 28 .

Diazepam 540 137 Medium Medium

Chlorpromazine | -5.26 3.26 High High -12 3

Atropine -5.26 1.82 High High

Progesterone -4.94 1.99 High High 18!

Promazine | -4.88 331 High High Tt e Jl'aﬁgpa,, IR Bt
Linear correlation between PLHF and P2AMP4is extremely good In Vitro permeability cutoff:
(R2=0.97) among calibration set LogP.fy"™* < —6.14: impermeable

-6.14<LogP;#}"P4<-5.66: low permeability
-5.66<LogP,;#}"P4<-5.33:medium permeability
-5.33<L0ngf}MPA: high permeability

MD permeability cutoff:

LogP;f" < —2.05: impermeable

-2.05<LogP;#}"P4<-0.15: low permeability
0.15<LogP;¢#"P4<1.62:medium permeability

PAMPA ., 1.: 13
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[ limpermeable Medium
__low [ IHigh

@ Incorrectly classified
@ Correctly classified : +
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MD-based permeability prediction successful rate on testing set : 78% (14/18)
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m  Comparison with LogP prediction

SLogP miLogP
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— il
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'logP . PAMPA 'logP ; PAMPA
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LogP

LogP

SLogP ‘miLogP
n s . . % . O
logP, PAMPA - .:‘. 10gP 4 PAMPA

(c)LogP ‘CLogP
. :. - E" B 2 =
) logP4 PAMPA ' 10gP 4 PAMPA

[ Jimpermeable
[ Low

Medium @ Incorrectly classified

[JHigh

@ Correctly classified

@ Low @ High

method  calibration compound correlation (R*) LLNL1-LLNLIS8 compounds correct (%) false positives false negatives “permeable” compounds correct
PME 0.97 78 4 0 8/8

SLogP 0.53 56 0 8 0/8

miLogP 0.75 56 0 8 0/8

(¢c)LogP 0.45 56 1 7 1/8

CLogP 0.44 61 1 6 2/8
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Conclusion

m MD-based computational model of membrane permeability can predict the
PAMPA-defined permeability category of a compound with greater accuracy
than LogP-based model.

m  MD-based permeability prediction could be used as an evaluation tool to rule
out impermeable drug candidates with a low false-negative rate.
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